Chemistry 115 Dr. Cary Willard Exam 4A Name Key

December 10, 2008

	Points Earned	Points Possible
Part 1		28
multiple choice		
Page 2		25
Page 3		29
Page 4		18
Total		100
ισται		100

All work must be shown to receive credit. Show all answers to the proper number of significant figures.

N_A = 6.022 x 10²³/mol K = ^oC+273.16 0^oC=273.16 K

Grossmont College

Periodic Table

IA																VIIA	NOBLE GASES
1 H 1.008	IIA											IIIA	IVA	VA	VIA	1 H 1.008	2 He 4.002
3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 23.00	12 Mg 24.30	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	IIB	13 Al 27.00	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.70	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (99)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0	89 Ac 227.0	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 ?? (269)						· · ·		
Lanthan	iide serie	S		58 Ce 140.:	59 Pr 1 140.9	60 Nd 144.2	61 Pm (147)	62 Sm 150.4	63 Eu 4 152.0	64 Gd 0 157.	65 Tb 3 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
Actinide	e series			90 Th 232.0	91 Pa 0 231.0	92 U 238.0	93 Np (237)	94 Pu (244)	95 Am) (243	96 Cm) (247	97 Bk) (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)

Part 1 – Multiple Choice (28 points)

1.	Which a. b.	phase change is evaporatio Solid to liquid Solid to gas	on? c. d.	Liquid to g Liquid to s		
2.	The va a. b.	apor pressure of a liquid is th Solid above its liquid Liquid above its solid	ne pres	ssure, at equ	uilibriu c. d.	im, of its Gas above its liquid Liquid above its gas
3.	What a. b.	type of bond exists between Polar covalent Nonpolar covalent	water	molecules?	c. d.	lonic Hydrogen bond
4.	At whi a. b.	ich temperature would CO ₂ g 10. °C 20. °C	jas be	most solubl	e? c. d.	30. °C 40. °C
5.	Which a. b.	is the hydronium ion? H ⁺¹ H ₃ O ⁺¹			c. d.	OH -1 OH ₂ -1
6.	Which a. b.	pH is most acidic? 3 7			c. d.	9 14
7.	What a. b.	is the conjugate base of NH ₃ NH ₂ ⁻¹ NH ⁻²	?		c. d.	NH4 ⁺¹ H ⁺¹
8.	A beta a. b.	a particle has A mass of 4 amu A charge of +4			c. d.	A charge of -1 Neither mass nor charge
9.						neutron, split to form two or more
	a.	ediate sized fragments, and Alpha decay Beta decay	relea		c. d.	Fission Fusion
10	. Which a. b.	i compound is organic? HOH NaOH			c. d.	HCI CH ₄
11.	. Whicl a. b.	h hydrocarbon series contair Alkynes Alkenes	ns a do	ouble covale	nt bor c. d.	nd between carbon atoms? Alkanes Aromatics
12	. Starch a. b.	nes are examples of Carbohydrates Proteins			c. d.	Lipids Nucleic acids

- 13. Fats and oils are called
 - a. Monoglycerides
 - b. Diglycerides

- c. Triglycerides
- d. Tetraglycerides

14. The most abundant steroid in the human body is

- a. Testosterone
- b. Progesterone

- c. Estrogen
- d. Cholesterol

Part 2 – Problems and Questions (72 points)

1. (8 points) Fill in the chart below

IUPAC name	Molecular formula
Nitric acid	HNO ₃
Hydrochloric acid	HCI
Sulfuric acid	H ₂ SO ₄
Hydrosulfuric acid or	H ₂ S
hydrogen sulfide	

2.

(5 points) Which liquid is more viscous, water or motor oil? In which liquid do you suppose the intermolecular attractions are stronger? Explain.

Motor oil is more viscous. Because it is more viscous, it must have stronger intermolecular forces.

3. (6 points) What mass (g) of 63.7% solution can be prepared from 22.4 g of MgS?

? g solution = 22.4 g MgS ×
$$\frac{100 \text{ g solution}}{63.7 \text{ g MgS}}$$
 = 35.2 g solution

4. (6 points) Calculate the molarity of a solution prepared by dissolving 38.5 g of SrO in enough water to make 600.0 ml of solution.

$$M = \frac{mol\ SrO}{L\ solution} = \frac{38.5\ g\ SrO \times \frac{1\ mol\ SrO}{103.62g\ SrO}}{0.6000\ L\ soln} = \frac{0.3715\ mol\ SrO}{0.6000\ L} = 0.6192\ M\ SrO$$

5. (6 points) 33.6 ml of 0.903 M $H_2C_2O_4$ is diluted to 150.0 ml. What is the molarity of the resulting solution?

$$M_1 V_1 = M_2 V_2 \rightarrow M_2 = M_1 \left(\frac{V_1}{V_2}\right) = 0.903 M \left(\frac{33.6 mL}{150.0 mL}\right) = 0.202 M H_2 C_2 O_4$$

6. (6 points) A solution has an H_3O^+ concentration of 5.83 x 10^{-2} M. Determine [OH⁻], pH, and pOH.

$$[H_3O^+] = 5.83 \times 10^{-2} \text{ M}$$
 pH = 1.234
 $[OH^{-1}] = 1.71 \times 10^{-13} \text{ M}$ pOH = 12.765

- (6 points) A 25.00 ml sample of vinegar was titrated with 29.64 ml of 0.4052 M NaOH. Calculate the molarity of acetic acid in the vinegar sample.
 - a. $HC_2H_3O_2$ + NaOH \longrightarrow NaC₂H₃O₂ + H₂O

$$mol \ NaOH = 29.64 \ mL \times \frac{0.4052 \ mol \ NaOH}{1000 \ mL} = 0.01201 \ mol \ NaOH$$
$$mol \ HAc = mol \ NaOH = 0.01201 \ mol \ HAc$$
$$M \ HAc = \frac{mol \ HAc}{L \ soln} = \frac{0.01201 \ mol \ HAc}{0.02500 \ L \ soln} = 0.4804 \ M \ HAc$$

8. (6 points) Differentiate between fusion and fission based on your knowledge of nuclear chemistry?

Fusion is the combining of two nuclei to make a heavier particle.

Fission is the splitting of a heavy nuclear particle into two smaller particles.

9. (5 points) Gold-198 is a beta emitter used to assess kidney activity. Write the equation for the decay of gold-198.

$$^{198}_{79}Au \rightarrow {}^{0}_{-1}e + {}^{198}_{80}Hg$$

- 10. (3 points) Give the IUPAC name of $CH_3 CH_2-CH_3$ $CH_3 CH_2-CH_3$ $CH_3-CH_2-CH_2-CH_2-CH_2-CH_3$
 - 3,5-Dimethyl octane (best)
 - Or 2-ethyl-4-methyl heptane
- 11. (3 points) Give the IUPAC name of $CH_3-CH_2-C\equiv C-CH_3$. 2-pentyne
- 12. (3 points) Draw a condensed structural formula for 2,2,4-trimethylhexane.

13. (3 points) Draw a condensed structural formula for 1-butyne.

14. (3 points) What kind of functional group is represented by $\ ^{CH_{3}\text{-}NH_{2}}$?

An amine

15. (3 points) What kind of functional group is represented by $\overset{O}{}^{CH_3-CH_2-C-OH}$?

A carboxylic acid